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Appendix A

DERIVATION OF DIVIDEND DISCOUNT
MODEL

I. Summation of Infinite Geometric Series

Summation of geometric series can be defined as:

S ¼ Aþ ARþ AR2 þ � � � þ ARn�1 (A1)

Multiplying both sides of equation (A1) by R, we

obtain

RS ¼ ARþ AR2 þ � � � þ ARn�1 þ ARn (A2)

Subtracting equation (A1) by equation (A2), we

obtain

S � RS ¼ A� ARn

It can be shown

S ¼ A(1� Rn)

1� R
(A3)

If R is smaller than 1, and n approaches to1, then

Rn approaches to 0 i.e.,

S1 ¼ Aþ ARþ AR2 þ � � � þ ARn�1 þ � � �
þ AR1, (A4)

then,

S1 ¼ A

1� R
(A5)

II. Dividend Discount Model

Dividend Discount Model can be defined as:

P0 ¼ D1

1þ k
þ D2

(1þ k)2
þ D3

(1þ k)3
þ � � � (A6)

Where P0 ¼ present value of stock price per share

Dt ¼ dividend per share in period t (t ¼ 1,

2, . . . ,n)

If dividends grow at a constant rate, say g, then,

D2 ¼ D1(1þ g), D3 ¼ D2(1þ g) ¼ D1(1þ g)2, and

so on.

Then, equation (A6) can be rewritten as:

P0 ¼ D1

1þ k
þD1(1þ g)

(1þ k)2
þD1(1þ g)2

(1þ k)3
þ � � � or,

P0 ¼ D1

1þ k
þ D1

(1þ k)
� (1þ g)

(1þ k)
þ D1

(1þ k)

� (1þ g)2

(1þ k)2
þ � � � (A7)

Comparing equation (A7) with equation (A4), i.e.,

P0 ¼ S1, D1

1þk
¼ A, and 1þg

1þk
¼ R as in the equation

(A4).

Therefore, if 1þg
1þk

< 1 or if k > g, we can use

equation (A5) to find out P0

i.e.,

P0 ¼ D1=(1þ k)

1� [(1þ g)=(1þ k)]

¼ D1=(1þ k)

[1þ k� (1þ g)]=(1þ k)

¼ D1=(1þ k)

(k� g)=(1þ k)

¼ D1

k� g
¼ D0(1þ g)

k� g



Appendix B

DERIVATION OF DOL, DFL AND DCL

I. DOL

Let P ¼ price per unit

V ¼ variable cost per unit

F ¼ total fixed cost

Q ¼ quantity of goods sold

The definition of DOL can be defined as:

DOL(Degree of operating leverage)

¼ Percentage Change in Profits

Percentage Change in Sales

¼ D EBIT=EBIT

DSales=Sales

¼ {[Q(P� V )� F ]� [Q0(P� V )� F ]}=[Q(P� V )� F ]

(P�Q� P�Q0)=(P�Q)

¼ [Q(P� V )�Q0(P� V )]=[Q(P� V )� F ]

P(Q�Q0)=P�Q

¼ (Q�Q0)(P� V )=[Q(P� V )� F ]

P(Q�Q0)=P�Q

=

¼ Q(P� V )

Q(P� V )� F

¼ Q(P� V )� F þ F

Q(P� V )� F
¼ Q(P� V )� F

Q(P� V )� F
þ F

Q(P� V )� F

¼ 1þ F

Q(P� V )� F

¼ 1þ Fixed Costs

Profits

II. DFL

Let i ¼ interest rate on

outstanding debt

D ¼ outstanding debt

N ¼ the total number of shares outstanding

t ¼ corporate tax rate

EAIT ¼ [Q(P� V )� F � iD](1� t)

The definition of DFL can be defined as:

DFL (Degree of financial leverage)

¼ D EPS=EPS

D EBIT=EBIT
¼ (D EAIT=N)=(EAIT=N)

D EBIT=EBIT

¼ D EAIT=EAIT

D EBIT=EBIT

¼
[Q(P� V )� F � iD](1� t)� [Q0(P� V )� F � iD]

(1� t)[Q(P� V )� F � iD](1� t)

[Q(P� V )� F ]� [Q0(P� V )� F ]

[Q(P� V )� F ]

¼
[Q(P� V )](1� t)� [Q0(P� V )](1� t)

[Q(P� V )� F � iD]� (1� t)

[Q(P� V )�Q0(P� V )]

[Q(P� V )� F ]

=

¼ Q(P� V )� F

Q(P� V )� F � iD
¼ EBIT

EBIT � iD

� �
III. DCL (degree of combined leverage)

¼ DOL�DFL

= ¼ Q(P� V )

Q(P� V )� F � iD

(Q − Q�) (P − V )
Q (P − V ) − F ×

P × Q
P (Q − Q�)

9=;
iD= interest payment
on dept

[(Q − Q�) (P − V )] (1−τ)
[Q (P − V ) − F − iD](1−τ)

× Q (P − V ) − F
(Q − Q�) (P − V )

Q (P − V)
Q (P − V) − F

Q (P − V) − F
Q (P − V) − F −iD

×



Appendix C

DERIVATION OF CROSSOVER RATE

Suppose there are 2 projects under consideration.

Cash flows of project A, B and B – A are as follows:

Based upon the information the table above we

can calculate the NPV of Project A and Project B

under different discount rates. The results are

presented in table C1.

NPV(B) is higher with low discount rates and

NPV(A) is higher with high discount rates. This is

because the cash flows of project A occur early and

those of project B occur later. If we assume a high

discount rate, we would favor project A; if a low

discount rate is expected, project B will be chosen.

In order to make the right choice, we can calculate

the crossover rate. If the discount rate is higher than

the crossover rate, we should choose project A; if

otherwise, we should go for project B.The crossover

rate, Rc, is the rate such that NPV(A) equals to

NPV(B).

Suppose the crossover rate is Rc, then

NPV(A)¼� 10,500þ 10,000=(1þ Rc)þ 1,000=

(1þ Rc)
2 þ 1,000=(1þ Rc)

3
(C1)

NPV(B) ¼� 10,500þ 1,000=(1þ Rc)þ 1,000=

(1þ Rc)
2 þ 12,000=(1þ Rc)

3
(C2)

NPV(A) ¼ NPV(B)

Therefore,

� 10,500þ 10,000

1þ Rc

þ 1,000

(1þ Rc)
2
þ 1,000

(1þ Rc)
3

¼ �10,500þ 1,000

1þ Rc

þ 1,000

(1þ Rc)
2
þ 12,000

(1þ Rc)
3

Rearranging the above equation (moving all terms

on the LHS to the RHS), we obtain (C3)

0 ¼ [� 10,500� (� 10,500)]þ 1,000

1þ Rc

� 10,000

1þ Rc

� �
þ 1,000

(1þ Rc)
2
� 1,000

(1þ Rc)
2

� �
þ 12,000

(1þ Rc)
3
� 1,000

(1þ Rc)
3

� �
(C3)

Solving equation (C3) by trial and error method

for Rc, Rc equals 10.55%.

Using the procedure of calculating internal rate

of return (IRR) as discussed in equations (C1),

(C2), and (C3), we calculate the IRR for both

Project A and Project B. The IRR for Project A

and B are 11.45% and 10.95% respectively. From

this information, we have concluded that Project A

will perform better than Project B without consid-

eration for change of discount rate. Therefore, the

IRR decision rule cannot be used for capital bud-

geting decisions when there exists an increasing or

decreasing net cash inflow. This is so called ‘‘The

Timing Problem’’ for using the IRR method for

capital budgeting decisions.

Period 0 1 2 3

Project A �10 500 10 000 1000 1000

Project B �10 500 1000 1000 12 000

Cash flows of B – A 0 �9000 0 11 000

Table C1. NPV of Project A and B under Different

Discount Rates

Discount rate NPV (Project A) NPV (Project B

0% 1500.00 3500.00

5% 794.68 1725.46

10% 168.67 251.31

15% �390.69 �984.10

20% �893.52 �2027.78



Appendix D

CAPITAL BUDGETING DECISIONS WITH
DIFFERENT LIVES

I. Mutually Exclusive Investment Projects

with Different Lives

The traditional NPV technique may not be the

appropriate criterion to select a project from mu-

tually exclusive investment projects, if these pro-

jects have different lives. The underlying reason is

that, compared with a long-life project, a short-life

project can be replicated more quickly in the long

run. In order to compare projects with different

lives, we compute the NPV of an infinite replica-

tion of the investment project. For example, let

Projects A and B be two mutually exclusive invest-

ment projects with the following cash flows.

By assuming a discount rate of 12 percent, the

traditional NPV of Project A is 18.30 and the NPV

of Project B is 20.09. This shows that Project B is a

better choice than Project A. However, the NPV

with infinite replications for Project A and B

should be adjusted into a comparable basis.

In order to compare Projects A and B, we com-

pute the NPV of an infinite stream of constant

scale replications. Let NPV (N, 1) be the NPV

of an N-year project with NPV (N), replicated

forever. This is exactly the same as an annuity

paid at the beginning of the first period and at

the end of every N years from that time on. The

NPV of the annuity is:

NPV (N, 1) ¼ NPV (N)þ NPV (N)

(1þ K)N
þ NPV (N)

(1þ K)2N
þ � � �

In order to obtain a closed-form formula, let

(1=[(1þ K)N ]) ¼ H. Then we have:

NPV (N, t) ¼ NPV (N)(1þH þH2 þ � � � þ Ht) (D1)

Multiplying both sides by H, this becomes

H[NPV (N, t)] ¼ NPV (N)(H þH2

þ � � � þHt þHtþ1) (D2)

Subtracting equation. (D2) from equation. (D1)

gives:

NPV (N, t)� (H)NPV (N, t) ¼ NPV (N)(1�Htþ1)

NPV (N, t) ¼ NPV (N)(1�Htþ1)

1�H

Taking the limit as the number of replications, t,

approaches infinity gives:

lim
t!1NPV (N, t) ¼ NPV (N, 1)

¼ NPV
1

1� [1=(1þ K)N ]

� �

¼ NPV (N)
(1þ K)N

(1þ K)N � 1

� �
(D3)

Equation (D3) is the NPV of an N-year project

replicated at constant scale an infinite number of

times. We can use it to compare projects with

different lives because when their cash-flow

streams are replicated forever, it is as if they had

the same (infinite) life.

Year Project A Project B

0 100 100

1 70 50

2 70 50

3 50



Based upon equation (D3), we can calculate the

NPV of Projects A and B as follows:

Consequently, we would choose to accept Pro-

ject A over Project B, because, when the cash flows

are adjusted for different lives, A provides the

greater cash flow.

Alternatively, equation (D3) can be rewritten as

an equivalent annual NPV version as:

K �NPV (N, 1) ¼ NPV (N)

Annuity factor
(D4)

where the annuity factor is

1� 1=(1þ K)N

K

The decision rule from equation (D4) is equiva-

lent to the decision rule of equation (D3).

The different project lives can affect the beta

coefficient estimate, as shown by Meyers and

Turnbull (1977). For empirical guidance for

evaluating capital-investment alternatives with

unequal lives, the readers are advised to refer

Emery (1982).

II. Equivalent Annual Cost

Equation (D4) can be written as:

NPV (N) ¼ K �NPV (N, 1)�Annuity Factor

(D5)

Corporate Finance by Ross, Westerfield, and Jaffe

(2005, 7th edn, p. 193) has discussed about Equiva-

lent Annual Cost. The Equivalent Annual Cost (C)

can be calculated as follows:

NPV (N) ¼ C �Annuity Factor (D6)

From equation (D5) and (D6), we obtain

C ¼ K �NPV (N, 1) (D7)

Assume company A buys a machine that costs

$1000 and the maintenance expense of $250 is to

be paid at the end of each of the four years. To

evaluate this investment, we can calculate the pre-

sent value of the machine. Assuming the discount

rate as 10 percent, we have

NPV (A) ¼ 1000þ 250

1:1
þ 250

(1:1)2
þ 250

(1:1)3
þ 250

(1:1)4

¼ 1792:47

(D8)

Equation (D8) shows that payments of (1000,

250, 250, 250, 250) are equivalent to a payment of

1792.47 at time 0. Using equation (D6), we can

equate the payment at time 0 of 1792.47 with a

four year annuity.

1792:47 ¼ C � A4
0:1 ¼ C � 3:1699

C ¼ 565:47

In this example, following equation (D3), we

can find

NPV (N, 1) ¼ 1749:47� (1þ 0:1)4=[(1þ 0:1)4

� 1]

¼ 5654:71

Then following the equation (D7), we obtain

C ¼ K �NPV (N, 1) ¼ 0:1� 5654:71 ¼ 565:47

Therefore, the equivalent annual cost C is iden-

tical to the equivalent annual NPV as defined in

equation (D4).

For Project A For Project B

NPV (2, 1)

¼ NPV (2)
(1þ 0:12)2

(1þ 0:12)2 � 1

" #

¼ (18:30)
1:2544

0:2544

� �
¼ 90:23

NPV (3, 1)

¼ NPV (3)
(1þ 0:12)3

(1þ 0:12)3 � 1

" #

¼ 20:09
1:4049

0:4049

� �
¼ 69:71

760 APPENDIX D



Appendix E

DERIVATION OF MINIMUM-VARIANCE
PORTFOLIO

If there is a two security portfolio, its variance can

be defined as:

s2
p ¼ w2

Ds
2
D þ w2

Es
2
E þ 2wDwECov(rD,rE) (E1)

where rD and rE are the rate of return for security

D and security E respectively; wD and wE are

weight associated with security D and E respect-

ively; s2
D and s2

E are variance of security D and E

respectively; and Cov(rD, rE) is the covariance

between rD and rE .

The problem is choosing optimal wD to minim-

ize the portfolio variance, s2
p

Min
wD

s2
P (E2)

We can solve the minimization problem by differ-

entiating the s2
p with respect to wD and setting the

derivative equal to 0 i.e., we want to solve

@s2
p

@wD

¼ 0 (E3)

Since, wD þ wE ¼ 1 or, wE ¼ 1� wD

therefore, the variance, s2
p, can be rewritten as

s2
p ¼ w2

Ds
2
D þ w2

Es
2
E þ 2wDwE Cov(rD,rE)

¼ w2
Ds

2
D þ (1� wD)

2s2
E þ 2wD(1� wD) Cov(rD,rE)

¼ w2
Ds

2
D þ s2

E � 2wDs
2
E þ w2

Ds
2
E þ 2wD Cov(rD,rE)

� 2w2
DCov(rD,rE)

Now, the first order conditions of equation (E3)

can be written as

2wDs
2
D � 2s2

E þ 2wDs
2
E þ 2 Cov(rD,rE)� 4wD

Cov(rD,rE) ¼ 0

Rearranging the above equation,

wDs
2
D þ wDs

2
E � 2wD Cov(rD,rE) ¼ s2

E � Cov(rD,rE)

s2
D þ s2

E � 2Cov(rD,rE)

 �

wD ¼ s2
E � Cov(rD,rE)

Finally, we have

wD ¼ s2
E � Cov(rD,rE)

s2
D þ s2

E � 2Cov(rD,rE)



Appendix F

DERIVATION OF AN OPTIMAL WEIGHT
PORTFOLIO USING THE SHARPE

PERFORMANCE MEASURE

Solution for the weights of the optimal risky port-

folio can be found by solving the following maxi-

mization problem:

Max
wD
Sp ¼ E(rp)� rf

sp

where E(rp) ¼ expected rates of return for port-

folio P

rf ¼ risk free rates of return

Sp ¼ sharpe performance measure, and

sp as defined in equation (E1) of Appendix E

We can solve the maximization problem by dif-

ferentiating the Sp with respect to wD, and setting

the derivative equal to 0 i.e., we want to solve

@Sp

@wD

¼ 0 (F1)

In the case of two securities, we know that

E(rp) ¼ wD E(rD)þ wE E(rE) (F2)

sp ¼ w2
Ds

2
D þ w2

Es
2
E þ 2wD wE Cov(rD, rE)


 �1=2
(F3)

wD þ wE ¼ 1 (F4)

From above equations (F2), (F3), and (F4), we

can rewrite E(rp)� rf and sp as:

E(rp)� rf ¼ wD E(rD)þ wE E(rE)� rf

¼ wD E(rD)þ (1� wD) E(rE)� rf

� f (wD)

(F5)

sp ¼ w2
D s2

D þ w2
E s2

E þ 2wDwE Cov(rD, rE)

 �1=2

¼ w2
D s2

D þ (1� wD)
2 s2

E þ 2wD(1� wD)


Cov(rD, rE)�1=2

� g(wD) (F6)

Equation (F1) becomes

@Sp

@wD

¼ @[f (wD)=g(wD)]

@wD

¼ f 0(wD)g(wD)� f (wD)g
0(wD)

[g(wD)]
2

¼ 0 (F7)

where f 0(wD) ¼ @f (wD)

@wD

¼ E(rD)� E(rE) (F8)

g0(wD) ¼ @g(wD)

@wD

¼ 1

2
� w2

Ds
2
D þ (1� wD)

2s2
Eþ2wD(1� wD)



Cov(rD,rE)�1=2�1

� 2wDs
2
D þ 2wDs

2
E � 2s2

E þ 2Cov(rD,rE)



� 4wD Cov(rD,rE)�
¼ wDs

2
D þ wDs

2
E � s2

E þ Cov(rD,rE)



� 2wD Cov(rD,rE)�
� w2

Ds
2
D þ (1� wD)

2s2
E þ 2wD(1� wD)



Cov(rD,rE)��1=2

(F9)



From equation (F7),

f 0(wD)g(wD)� f (wD)g
0(wD) ¼ 0, or f 0(wD)g(wD)

¼ f (wD)g
0(wD)

(F10)

Now, plugging f (wD), g(wD), f
0(wD), and g0(wD)

[equations (F5), (F6), (F8), and (F9) ] into equa-

tion (F10), we have

E(rD)� E(rE)½ �

� w2
Ds

2
D þ (1� wD)

2s2
E þ 2wD(1� wD)Cov(rD,rE)


 �1=2
¼ wDE(rD)þ (1� wD)E(rE)� rf

 �
� wDs

2
D þ wDs

2
E � s2

E þ Cov(rD,rE)



� 2wDCov(rD,rE)�
� w2

Ds
2
D þ (1� wD)

2s2
E þ 2wD(1� wD)



Cov(rD,rE)��1=2

(F11)

Multiplying by w2
Ds

2
D þ (1� wD)

2s2
E


 þ2wD

(1� wD) Cov(rD, rE)�1=2 on both sides of equation

(F11), we have

E(rD)� E(rE)½ �
� w2

Ds
2
D þ (1� wD)

2s2
E þ 2wD(1� wD)Cov(rD,rE)


 �
¼ wDE(rD)þ (1� wD)E(rE)� rf

 �

� wDs
2
D þ wDs

2
E � s2

E þ Cov(rD,rE)� 2wDCov(rD,rE)

 �

(F12)

Rearrange all terms on both hand sides of equation

(F12), i.e.,

Left hand side of equation (F12)

E(rD)� E(rE)½ �
� w2

Ds
2
D þ (1� wD)

2s2
E þ 2wD(1� wD)Cov(rD,rE)


 �
¼ E(rD)� E(rE)½ �

� w2
Ds

2
D þ s2

E � 2wDs
2
E þ w2

Ds
2
E þ 2wDCov(rD,rE)



�2w2

DCov(rD,rE)�

¼ E(rD)� E(rE)½ � � w2
D s2

D þ s2
E � 2Cov(rD,rE)


 ��
þ2wD Cov(rD,rE)� s2

E


 �þ s2
Eg

¼ E(rD)� E(rE)½ �� w2
D s2

D þ s2
E � 2Cov(rD,rE)


 �� �
þ E(rD)� E(rE)½ �� 2wD Cov(rD,rE)� s2

E


 �� �þ E(rD)½
�E(rE)��s2

E¼ E(rD)� E(rE)½ �� s2
D þ s2

E



�2Cov(rD,rE)�w2

D þ 2 E(rD)� E(rE)½ �
� Cov(rD,rE)� s2

E


 �
wD þ E(rD)� E(rE)½ � � s2

E

Right hand side of equation (F12)

[wDE(rD)þ (1� wD)E(rE)� rf ]� [wDs
2
D þ wDs

2
E

� s2
E þ Cov(rD,rE)� 2wDCov(rD,rE)]

¼ [wDE(rD)þ E(rE)� wDE(rE)� rf ]� [wDs
2
D

þ wDs
2
E � 2wDCov(rD,rE)� s2

E þ Cov(rD,rE)]

¼ wD[E(rD)� E(rE)]þ [E(rE)� rf ]
� �� wD[s

2
D

�
þ s2

E � 2Cov(rD,rE)]þ Cov(rD,rE)� s2
E

�
¼ wD[E(rD)� E(rE)]� wD[s

2
D þ s2

E � 2Cov(rD,rE)]

þ wD[E(rD)� E(rE)]� [Cov(rD,rE)� s2
E]

þ [E(rE)� rf ]� wD[s
2
D þ s2

E � 2Cov(rD,rE)]

þ [E(rE)� rf ]� [Cov(rD,rE)� s2
E ]

¼ [E(rD)� E(rE)]� [s2
D þ s2

E � 2Cov(rD,rE)]w
2
D

þ [E(rD)� E(rE)]� [Cov(rD,rE)� s2
E ]wD

þ [E(rE)� rf ]� [s2
D þ s2

E � 2Cov(rD,rE)]wD

þ [E(rE)� rf ]� [Cov(rD,rE)� s2
E ]

Subtracting [E(rD)� E(rE)][s
2
D þ s2

E � 2Cov

(rD,rE)]w
2
D and

[E(rD)� E(rE)][Cov (rD,rE)� s2
E ]wD from both

hand sides of equation (F12), we have

[E(rD)� E(rE)]� [Cov(rD,rE)� s2
E ]wD

þ [E(rD)� E(rE)]� s2
E

¼ [E(rE)� rf ]� [s2
D þ s2

E � 2Cov(rD,rE)]wD

þ [E(rE)� rf ]� [Cov(rD,rE)� s2
E] (F13)

Moving all the terms with wD on one side and

leaving the rest terms on the other side from equa-

tion (F13), we have
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[E(rD)� E(rE)]� s2
E � [E(rE)� rf ]

� [Cov(rD,rE)� s2
E ]

¼ [E(rE)� rf ]� [s2
D þ s2

E � 2Cov(rD,rE)]wD

� [E(rD)� E(rE)]� [Cov(rD,rE)� s2
E]wD

(F14)

Rearrange equation (F14) in order to solve for wD,

i.e.,

[E(rD)� E(rE)þ E(rE)� rf ]� s2
E

� [E(rE)� rf ]Cov(rD,rE)

¼ [E(rE)� rf ]s
2
D þ [E(rE)� rf ]s

2
E

�
� [E(rE)� rf ][2Cov(rD,rE)]� [E(rD)

� E(rE)]Cov(rD,rE)þ [E(rD)� E(rE)]s
2
EgwD

¼ [E(rD)� rf ]s
2
E þ [E(rE)� rf ]s

2
D � [E(rD)

�
� rf þ E(rE)� rf ]Cov(rD,rE)]gwD

Finally, we have the optimum weight of security D

as

wD ¼ [E(rD)� rf ]s
2
E � [E(rE)� rf ]Cov(rD,rE)

[E(rD)� rf ]s
2
E þ [E(rE)� rf ]s

2
D

�[E(rD)� rf þ E(rE)� rf ]Cov(rD,rE)
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Appendix G

APPLICATIONS OF THE BINOMIAL
DISTRIBUTION TO EVALUATE CALL

OPTIONS

In this appendix, we show how the binomial dis-

tribution is combined with some basic finance con-

cepts to generate a model for determining the price

of stock options.

What is an Option?

In the most basic sense, an option is a contract

conveying the right to buy or sell a designated

security at a stipulated price. The contract nor-

mally expires at a predetermined date. The most

important aspect of an option contract is that the

purchaser is under no obligation to buy; it is,

indeed, an ‘‘option.’’ This attribute of an option

contract distinguishes it from other financial con-

tracts. For instance, whereas the holder of an op-

tion may let his or her claim expire unused if he or

she so desires, other financial contracts (such as

futures and forward contracts) obligate their par-

ties to fulfill certain conditions.

A call option gives its owner the right to buy the

underlying security, a put option the right to sell.

The price at which the stock can be bought (for a

call option) or sold (for a put option) is known as

the exercise price.

The Simple Binomial Option Pricing Model

Before discussing the binomial option model, we

must recognize its two major underlying assump-

tions. First, the binomial approach assumes that

trading takes place in discrete time, that is, on a

period-by-period basis. Second, it is assumed that

the stock price (the price of the underlying asset)

can take on only two possible values each period; it

can go up or go down.

Say we have a stock whose current price per

share S can advance or decline during the next

period by a factor of either u (up) or d (down).

This price either will increase by the proportion

u�1	0 or will decrease by the proportion

1�d, 0<d<1. Therefore, the value S in the next

period will be either uS or dS. Next, suppose that

a call option exists on this stock with a current

price per share of C and an exercise price per

share of X and that the option has one period left

to maturity. This option’s value at expiration is

determined by the price of its underlying stock

and the exercise price X. The value is either

Cu ¼ Max(0, uS � X ) (G1)

or

Cd ¼ Max(0, dS � X) (G2)

Why is the call worth Max (0, uS � X ) if the

stock price us uS? The option holder is not obliged

to purchase the stock at the exercise price of X, so

she or he will exercise the option only when it is

beneficial to do so. This means the option can

never have a negative value. When is it beneficial

for the option holder to exercise the option? When

the price per share of the stock is greater than the

price per share at which he or she can purchase

the stock by using the option, which is the exercise

price, X. Thus if the stock price uS exceeds

the exercise price X, the investor can exercise the



option and buy the stock. Then he or she can

immediately sell it for uS, making a profit of uS–

X (ignoring commission). Likewise, if the stock

price declines to dS, the call is worth Max

(0, dS � X).

Also for the moment, we will assume that the

risk-free interest rate for both borrowing and lend-

ing is equal to r percent over the one time period

and that the exercise price of the option is equal

to X.

To intuitively grasp the underlying concept of

option pricing, we must set up a risk-free portfolio

– a combination of assets that produces the same

return in every state of the world over our chosen

investment horizon. The investment horizon is as-

sumed to be one period (the duration of this period

can be any length of time, such as an hour, a day, a

week, etc.). To do this, we buy h share of the stock

and sell the call option at its current price of C.

Moreover, we choose the value of h such that our

portfolio will yield the same payoff whether the

stock goes up or down.

h(uS)� Cu ¼ h(dS)� Cd (G3)

By solving for h, we can obtain the number of

shares of stock we should buy for each call option

we sell.

h ¼ Cu � Cd

(u� d)S
(G4)

Here h is called the hedge ratio. Because our

portfolio yields the same return under either of

the two possible states for the stock, it is without

risk and therefore should yield the risk-free rate of

return, r percent, which is equal to the risk-

free borrowing and lending rate, the condition

must be true; otherwise, it would be possible to

earn a risk-free profit without using any money.

Therefore, the ending portfolio value must be

equal to (1 þ r) times the beginning portfolio

value, hS � C.

(1þ r)(hS � C) ¼ h(uS)� Cu ¼ h(dS)� Cd (G5)

Note that S andC represent the beginning values

of the stock price and the option price, respectively.

Setting R ¼ 1þ r, rearranging to solve for C,

and using the value of h from Equation (G4), we

get

C ¼ R� d

u� d

� �
Cu þ u� R

u� d

� �
Cd

� �
=R (G6)

where d < r < u. To simplify this equation, we set

p ¼ R� d

u� d
so 1� p ¼ u� R

u� d


 �
(G7)

Thus we get the option’s value with one period

to expiration

C ¼ pCu þ (1� p)Cd

R
(G8)

This is the binomial call option valuation for-

mula in its most basic form. In other words, this is

the binomial valuation formula with one period to

expiration of the option.

To illustrate the model’s qualities, let’s plug in

the following values, while assuming the option

has one period to expiration. Let

X ¼ $100

S ¼ $100

U ¼ (1:10), so uS ¼ $110

D ¼ (0:90), so dS ¼ $90

R ¼ 1þ r ¼ 1þ 0:07 ¼ 1:07

Table G.1. Possible Option Value at Maturity

Today

Stock (S) Option (C) Next Period (Maturity)

uS ¼ $110 Cu ¼ Max(0,uS � X )

¼ Max(0,110� 100)

¼ Max(0,10)

¼ $10
$100 C

dS ¼ $90 Cd ¼ Max(0,dS � X )

¼ Max(0,90� 100)

¼ Max(0,� 10)

¼ $0
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First we need to determine the two possible

option values at maturity, as indicated in Table

G.1.

Next we calculate the value of p as indicated in

Equation (G7).

p ¼ 1:07� 0:90

1:10� 0:90
¼ 0:85 so 1� p ¼ 1:10� 1:07

1:10� 0:90

¼ 0:15

Solving the binomial valuation equation as indi-

cated in Equation (G8), we get

C ¼ 0:85(10)þ 0:15(0)

1:07

¼ $7:94

The correct value for this particular call option

today, under the specified conditions, is $7.94. If

the call option does not sell for $7.94, it will be

possible to earn arbitrage profits. That is, it will be

possible for the investor to earn a risk-free profit

while using none of his or her own money. Clearly,

this type of opportunity cannot continue to exist

indefinitely.

The Generalized Binomial Option Pricing Model

Suppose we are interested in the case where there is

more than one period until the option expires. We

can extend the one-period binomial model to con-

sideration of two or more periods.

Because we are assuming that the stock follows

a binomial process, from one period to the next it

can only go up by a factor of u or go down by a

factor of d. After one period the stock’s price is

either uS or dS. Between the first and second

periods, the stock’s price can once again go up by

u or down by d, so the possible prices for the stock

two periods from now are uuS, udS, and ddS. This

process is demonstrated in tree diagram (Figure

G.1) given in Example G.1 later in this appendix.

Note that the option’s price at expiration, two

periods from now, is a function of the same rela-

tionship that determined its expiration price in the

one-period model, more specifically, the call op-

tion’s maturity value is always

CT ¼ [0, ST � X ] (G9)

where T designated the maturity date of the option.

To derive the option’s price with two periods to

go (T ¼ 2), it is helpful as an intermediate step to

derive the value of Cu and Cd with one period to

expiration when the stock price is either uS or dS,

respectively.

Cu ¼ pCuu þ (1� p)Cud

R
(G10)

Cd ¼ pCdu þ (1� p)Cdd

R
(G11)

137.89  

190.61

137.89  

  99.75 

162.22  

117.35

99.75

99.75 

72.16 

117.35  

84.90 

137.89  

138.06  

99.88

99.75 

137.89

99.75 

72.16 

117.35  

84.90

72.16

72.16 

52.20 

84.90 

61.41 

99.75 

99.88 

72.25

117.50  

85.00

$100.00

0 1 2 3 4 

Figure G.1. Price Path of Underlying Stock Source:

Rendelman, R.J., Jr., and Bartter, B.J. (1979). ‘‘Two-

State Option Pricing,’’ Journal of Finance 34 (Decem-

ber), 1906.
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Equation (G10) tells us that if the value of the

option after one period is Cu, the option will be

worth either Cuu (if the stock price goes up) or Cud

(if stock price goes down) after one more period (at

its expiration date). Similarly, Equation (G11)

shows that the value of the option is Cd after one

period, the option will be worth either Cdu or Cdd

at the end of the second period. Replacing Cu and

Cd in Equation (G8) with their expressions in

Equations (G10) and (G11), respectively, we can

simplify the resulting equation to yield the two-

period equivalent of the one-period binomial pri-

cing formula, which is

C ¼ p2Cuu þ 2p(1� p)Cud þ (1� p)2Cdd

R2
(G12)

In Equation (G12), we used the fact that

Cud ¼ Cdu because the price will be the same in

either case.

We know the values of the parameters S and X.

If we assume that R, u, and d will remain constant

over time, the possible maturity values for the

option can be determined exactly. Thus deriving

the option’s fair value with two periods to maturity

is a relatively simple process of working backwards

from the possible maturity values.

Using this same procedure of going from a one-

period model to a two-period model, we can ex-

tend the binomial approach to its more generalized

form, with n periods maturity

C ¼ 1

Rn

Xn
k¼0

n!

k!(n� k)!
pk(1� p)n�k

Max[0,ukdn�kS � X ]

(G13)

To actually get this form of the binomial

model, we could extend the two-period model to

three periods, then from three periods to four

periods, and so on. Equation (G13) would be the

result of these efforts. To show how Equation

(G13) can be used to assess a call option’s value,

we modify the example as follows: S ¼ $100,

X ¼ $100, R ¼ 1:07, n ¼ 3, u ¼ 1:1 and d ¼ 0:90.

First we calculate the value of p from Equation

(G7) as 0.85, so 1� p is 0.15. Next we calculate the

four possible ending values for the call option after

three periods in terms of Max[0, ukdn�kS � X ].

C1 ¼ [0, (1:1)3(0:90)0(100)� 100] ¼ 33:10

C2 ¼ [0, (1:1)2(0:90) (100)� 100] ¼ 8:90

C3 ¼ [0, (1:1) (0:90)2(100)� 100] ¼ 0

C4 ¼ [0, (1:1)0(0:90)3(100)� 100] ¼ 0

Now we insert these numbers (C1, C2, C3, and

C4) into the model and sum the terms.

C ¼ 1

(1:07)3
3!

0!3!
(0:85)0(0:15)3 � 0

�

þ 3!

1!2!
(0:85)1(0:15)2 � 0

þ 3!

2!1!
(0:85)2(0:15)1 � 8:90

þ 3!

3!0!
(0:85)3(0:15)0 � 33:10

#

¼ 1

1:225
0þ 0þ 3� 2� 1

2� 1� 1
(0:7225)(0:15)(8:90)

�

þ 3� 2� 1

3� 2� 1� 1
� (0:61413)(1)(33:10)

#

¼ 1

1:225
(0:32513� 8:90)þ (0:61413� 33:10)]½

¼ $18:96

As this example suggests, working out a mul-

tiple-period problem by hand with this formula

can become laborious as the number of periods

increases. Fortunately, programming this model

into a computer is not too difficult.

Now let’s derive a binomial option pricing

model in terms of the cumulative binomial density

function. As a first step, we can rewrite Equation

(G13) as
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C ¼ S
Xn
k¼m

n!

k!(n� K)!
pK (1� p)n�k u

kdn�k

Rn

" #

� X

Rn

Xn
k¼m

n!

k!(n� k)!
pk(1� p)n�k

" #
(G14)

This formula is identical to Equation (G13) except

that we have removed the Max operator. In order

to remove the Max operator, we need to make

ukdn�kS � X positive, which we can do by chan-

ging the counter in the summation from k ¼ 0 to

k ¼ m. What is m? It is the minimum number

of upward stock movements necessary for the

option to terminate ‘‘in the money’’ (that is,

ukdn�kS � X > 0). How can we interpret Equation

(G14)? Consider the second term in brackets; it is

just a cumulative binomial distribution with

parameters of n and p. Likewise, via a small alge-

braic manipulation we can show that the first

term in the brackets is also a cumulative bino-

mial distribution. This can be done by defining

P0 � (u=R)p and 1� P0 � (d=R)(1� p). Thus

Pk(1� p)n�k u
kdn�k

Rn
¼ prk(1� p0)n�k

Therefore the first term in brackets is also a

cumulative binomial distribution with parameters

of n and p0. Using Equation (G10) in the text, we

can write the binomial call option model as

C ¼ SB1(n, p
0, m)� X

Rn
B2(n, p, m) (G15)

where

B1(n, p
0, m) ¼

Xn
k¼m

Cn
kp

0k(1� p0)n�k

B2(n, p, m) ¼
Xn
k¼m

Cn
kp

k(1� p)n�k

and m is the minimum amount of time the stock

has to go up for the investor to finish in the money

(that is, for the stock price to become larger than

the exercise price).

In this appendix, we showed that by employ-

ing the definition of a call option and by making

some simplifying assumptions, we could use the

binomial distribution to find the value of a call

option. In the next chapter, we will show how the

binomial distribution is related to the normal dis-

tribution and how this relationship can be used

to derive one of the most famous valuation equa-

tions in finance, the Black-Scholes option pricing

model.

Example G.1

A Decision Tree Approach to Analyzing Future

Stock Price

By making some simplifying assumptions about

how a stock’s price can change from one period

to the next, it is possible to forecast the future price

of the stock by means of a decision tree. To illus-

trate this point, let’s consider the following ex-

ample.

Suppose the price of Company A’s stock is cur-

rently $100. Now let’s assume that from one period

to the next, the stock can go up by 17.5 percent or

go down by 15 percent. In addition, let us assume

that there is a 50 percent chance that the stock will

go up and a 50 percent chance that the stock will

go down. It is also assumed that the price move-

ment of a stock (or of the stock market) today is

completely independent of its movement in the

past; in other words, the price will rise or fall

today by a random amount. A sequence of these

random increases and decreases is known as a

random walk.

Given this information, we can lay out the paths

that the stock’s price may take. Figure G.1 shows

the possible stock prices for company A for four

periods.

Note that in period 1 there are two possible out-

comes: the stock can go up in value by 17.5 percent

to $117.50 or down by 15 percent to $85.00. In
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period 2 there are four possible outcomes. If the

stock went up in the first period, it can go up

again to $138.06 or down in the second period to

$99.88. Likewise, if the stock went down in the first

period, it can go down again to $72.25 or up in the

second period to $99.88. Using the same argument,

we can trace the path of the stock’s price for all four

periods.

If we are interested in forecasting the stock’s

price at the end of period 4, we can find the average

price of the stock for the 16 possible outcomes that

can occur in period 4.

�PP ¼
P16
i¼1

Pi

16
¼ 190:61þ 137:89þ � � � þ 52:20

16
¼ $105:09

We can also find the standard deviation for the

stock’s return.

sP¼ (190:61�105:09)2þ���þ(52:20�105:09)2

16

" #1=2
¼$34:39

�PP and sP can be used to predict the future price of

stock A.
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